OpenAI рассказала, как обслуживает 800 миллионов пользователей ChatGPT на обычном PostgreSQL — больше миллиона запросов в секунду, без кастомных модификаций.
Архитектура: 1 primary инстанс + ~50 read реплик на Azure-инфраструктуре. Latency на p99 — двузначные миллисекунды. Правда, есть нюанс — write-heavy workloads OpenAI вывела в Azure CosmosDB, а в PostgreSQL оставила read-heavy операции.
Что интересно — они не стали городить сложную систему. Вместо этого взяли стандартный PostgreSQL и выжали из него максимум через базовые практики: connection pooling (PgBouncer) для переиспользования соединений вместо создания новых, query optimization для профилирования и переписывания тяжёлых запросов, strategic indexing — индексы ровно там, где нужны.
Для AI-функций используют расширение
База обслуживает данные пользователей, истории разговоров и API-взаимодействия.
➡️ Главный вывод: PostgreSQL действительно масштабируется до экстремальных нагрузок, если правильно настроить. Не нужно сразу бежать за NewSQL или распределёнными системами — сначала стоит выжать всё из проверенных решений.
Инженеры OpenAI подчёркивают: успех в том, что они фокусировались на best practices, а не на переизобретении колеса. Connection pool, индексы, read реплики — это всё есть в документации PostgreSQL. Просто нужно применить грамотно.
Годный пример того, что правильное разделение нагрузки важнее выбора модной БД. PostgreSQL для чтения + CosmosDB для записи — и никакого шардинга одной базы. Простая архитектура побеждает.
📎 OpenAI Blog, Hacker News
@prog_stuff
Архитектура: 1 primary инстанс + ~50 read реплик на Azure-инфраструктуре. Latency на p99 — двузначные миллисекунды. Правда, есть нюанс — write-heavy workloads OpenAI вывела в Azure CosmosDB, а в PostgreSQL оставила read-heavy операции.
Что интересно — они не стали городить сложную систему. Вместо этого взяли стандартный PostgreSQL и выжали из него максимум через базовые практики: connection pooling (PgBouncer) для переиспользования соединений вместо создания новых, query optimization для профилирования и переписывания тяжёлых запросов, strategic indexing — индексы ровно там, где нужны.
Для AI-функций используют расширение
pgvector — хранят и ищут высокоразмерные векторы (embeddings) для семантического поиска в данных ChatGPT.База обслуживает данные пользователей, истории разговоров и API-взаимодействия.
Инженеры OpenAI подчёркивают: успех в том, что они фокусировались на best practices, а не на переизобретении колеса. Connection pool, индексы, read реплики — это всё есть в документации PostgreSQL. Просто нужно применить грамотно.
Годный пример того, что правильное разделение нагрузки важнее выбора модной БД. PostgreSQL для чтения + CosmosDB для записи — и никакого шардинга одной базы. Простая архитектура побеждает.
@prog_stuff